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What Is data science?
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Best thing about being a data scientist:
nobody actually knows what data science
*Is*, soO you can pretty much do whatever you
want.
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Vinod Khosla: In The Next 10 Years, Data
Science Will Do More For Medicine Than All
Biological Sciences Combined

FREDERIC LARDINOIS ¥

Wednesday, September 11th, 2013 Comments

Data Scientist: The Sexiest Job of the 21st Century

by Thomas H. Davenport and D.J. Patil



Interest over time - v/ News headlines Forecast
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2011 May - Join Bitly as Data Scientist

2013 August - Lead Data Scientist at Bitly

2014 June - Lead Data Scientist at Spring
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Real-Time Media Map

1. Select a media type 2, Select your view

Newspapers v Real-time traffic Winnersbystate @ Both

Media Properties Legend
(click to view by property)
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Interested in what Bitly can do with your link click data? Please reach out to us at community@bitly.com



Clicked “Trayvon” Links Per Day (thousands)
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*STATE INTEREST IS THE PORTION OF CLICKED LINKS THAT RELATE TO TRAYVON MARTIN COMPARED WITH OTHER STATES IN ONE DAY;
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Percent Attention on Trayvon Marin Event
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Big-Data
to
No-Data
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Three Areas of Data
Science



Data Engineering



[] Brian David Eoff @bde - Jun 11
Not so much a data scientist as a data
plumber. Conceiving of the flow, pipes and
stores necessary to accomplish our goals.



More than...
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Everything in UTC



Data Analysis
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Reproducibllity,
Automation,
Version Control



Data Modeling



Discovery



Collaborative Filtering for Implicit Feedback Datasets

Yifan Hu Yehuda Koren* Chris Volinsky
AT&T Labs — Research Yahoo! Research AT&T Labs — Research
Florham Park, NJ 07932 Haifa 31905, Israel Florham Park, NJ 07932
Abstract tent based approach creates a profile for each user or prod-

A common task of recommender systems is to improve
customer experience through personalized recommenda-
tions based on prior implicit feedback. These systems pas-
sively track different sorts of user behavior, such as pur-
chase history, watching habits and browsing activity, in or-
der to model user preferences. Unlike the much more ex-
tensively researched explicit feedback, we do not have any
direct input from the users regarding their preferences. In
particular, we lack substantial evidence on which products
consumer dislike. In this work we identify unique proper-
ties of implicit feedback datasets. We propose treating the
data as indication of positive and negative preference asso-
ciated with vastly varying confidence levels. This leads to a
factor model which is especially tailored for implicit feed-
back recommenders. We also suggest a scalable optimiza-
tion procedure, which scales linearly with the data size. The
algorithm is used successfully within a recommender system
for television shows. It compares favorably with well tuned
implementations of other known methods. In addition, we
offer a novel way to give explanations to recommendations
given by this factor model.

uct to characterize its nature. As an example, a movie pro-
file could include attributes regarding its genre, the par-
ticipating actors, its box office popularity, etc. User pro-
files might include demographic information or answers to
a suitable questionnaire. The resulting profiles allow pro-
grams to associate users with matching products. However,
content based strategies require gathering external informa-
tion that might not be available or easy to collect.

An alternative strategy, our focus in this work, relies only
on past user behavior without requiring the creation of ex-
plicit profiles. This approach is known as Collaborative
Filtering (CF), a term coined by the developers of the first
recommender system - Tapestry [8]. CF analyzes relation-
ships between users and interdependencies among products,
in order to identify new user-item associations. For exam-
ple, some CF systems identify pairs of items that tend to be
rated similarly or like-minded users with similar history of
rating or purchasing to deduce unknown relationships be-
tween users and items. The only required information is the
past behavior of users, which might be their previous trans-
actions or the way they rate products. A major appeal of CF
is that it is domain free, yet it can address aspects of the data
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Popularity
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Caverlee’s Rule



How to become a data
scientist”?



CONFESSION

| never took a data
sclence class.



What do | look tor
when | hire”



Questions?









Descriptive, Prescriptive, Predictive

Data Engineering, Data Analysis, Machine
Learning/Model Building/Algorithms

ETL, or never underestimate the benefit of a good
plumber.

AB Test. Multi-Armed Bandit Testing.
Optimization. Retention

Bitly: 200 Million Events per Day
Spring: O

Data Science (Inductive Reasoning), obtaining data,
cleaning munging data, exploring data, modeling data
Interpreting data



Data Engineering
ETL

Redshift

Event Streams
Kafka, Kinesis, NSQ



Tools, Process, Recruiting,
Communication, Ethics

Test- Driven Data Science
Learn from software development.

Version Control, Automated Testing



Analysis
Price Points
Conversion

Metric Aggregation

elc.



Matrix Factorization
Recommendation

Popularity



