

Big Data

A Lot of Opportunities

For Producing Wrong Results

Data Science Symposium 2014

MMag. Dr. Günther Eibl

Influence of "Big" on Analysis Mistakes

- With Big Data
 - → Memory and computational costs get important
 - → Kind of mistakes are mostly known
 - → Easier to fall into a trap
 - → Mistakes may have greater effects
 - → Study typical (known) analysis effects

Outline: The Data Analysis Process

- Pre-analysis
 - Identify goals and constraints
 - Obtain data and its background
 - Treat data issues
- Analysis
 - Descriptive analysis
 - Modeling
- Reporting

Data Collection: General Issues

- Two main types of studies
 - Prospective study
 - Experiments with purposeful design
 - Retrospective study
 - Data are easy to get or already there
- Big Data similar to retrospective study
 - Data come from sensors or tracking devices, Web pages, Facebook accounts,...
- Drawbacks of a retrospective study
 - Maybe not representative → selection bias (missing data)
 - Controls are typically unavailable
 - Data scientists not involved in data collection → interpretation issues
- → Validity of results reduced

Data Collection: Big-Data-Specific

- Tools that are based on big data can be easily gamed
 - Wrong entries in Facebook
 - Google bombing (spamdexing)
- Robustness and repeatability of results
 - Google: changes in data collection due to live system
- Echo-chamber effect:
 - When data source is itself a product of big data → opportunities for vicious cycles
 - Example
 - Google translate compares parallel text from different languages
 - What, if one of the texts (e.g. a Wikipedia text in a rare language) already stems from Google translate?

Data Collection: Miss Important Inputs

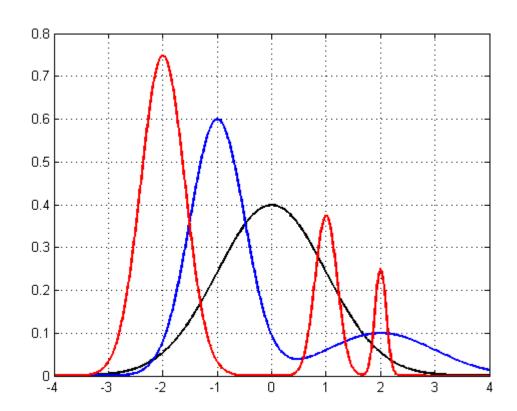
- Miss to collect important input variable (causes)
 - → Suboptimal prediction
 - → Wrong results, if not analyzed properly
- Remedy: Obtain background/domain knowledge
 - Example traffic flow

Descriptive Analysis

- Purpose
 - Get a "feeling" for the data
 - Know the data domain: where are your data
 - Identify outliers (Boxplots)
 - See the distribution of values
 -
- Check domain knowledge
- Too few descriptive analyses
 - Time constraints
 - Value of the descriptive analysis underestimated
 - Too much trust in automatic analysis tools
 - "The data are the model"
- Result: Wrong assumptions → Wrong results

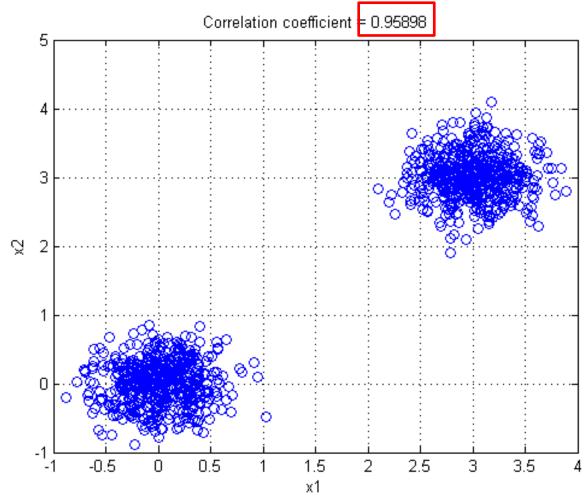
Automatic listing of means (and standard deviations)

- Still present mistake: only list mean values
- Example: mean = 0



Automatic listing of correlation coefficients

• "Common cause"-like effect

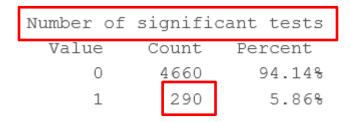


Hypothesis Testing: Multiple Test Problem

- Multiple comparison problem example
 - Does a vitamin have a beneficial influence?
 - On what?
 - On anything available
 - On weight, prevention of diseases, scores of IQ-tests, earnings,...
- Even worse: Compare everything with everything
- No clear goals identified → Research question: can we find anything?
- Answer for Big Data: yes, plenty!
- Great for the report, but useless for the product

Multiple Test Problem Example

- Sample size N = 10000
- 100 statistically independent normal distributions
- Compare all with all for differences in means → 4950 t-tests



Multiple Test Problem Example: Remedy

- Does a higher sample size help? No
- Recap Pre-analysis
 - Identify goals
 - Obtain background knowledge
- Formulate research questions
 - Determine the outcome
 - Determine possible influences
 - Compare outcome with each of the possible influences
 - Adjust family-wise alpha-error rate
 - Simplest method: Bonferroni-correction (conservative)
 - For each t-test use $\alpha = 0.05$ /"number of tests" = 0.05/4950

≈ 10⁻⁵

No significant test remains in our test example

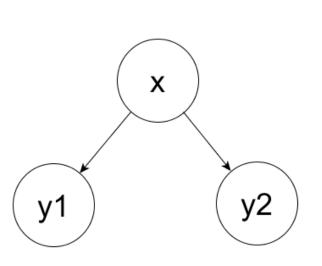
Correlation

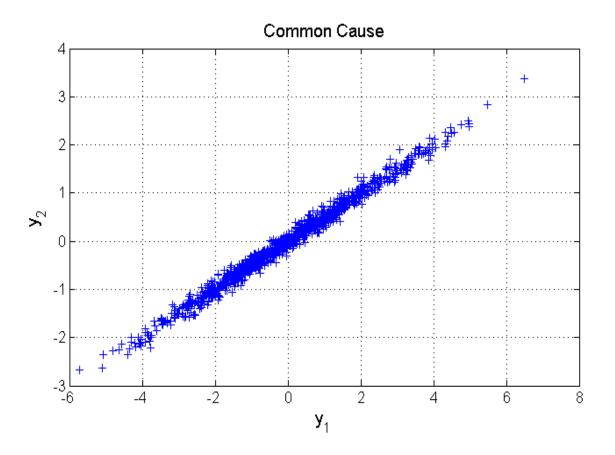
- Correlation vs. causality
 - From 2006 to 2011 the United States murder rate correlated well with the market share of Internet Explorer
 - Both went down sharply.
 - From 1998 to 2007 the number of new cases of autism diagnosed was extremely well correlated with sales of organic food
 - Both went up sharply

Causality

- Needed for research questions such as
 - Why did it happen?
 - What is the best that can happen?
- Correlation is not enough
- And correlation ≠ causality!

Correlation ≠ Causality: Common Cause



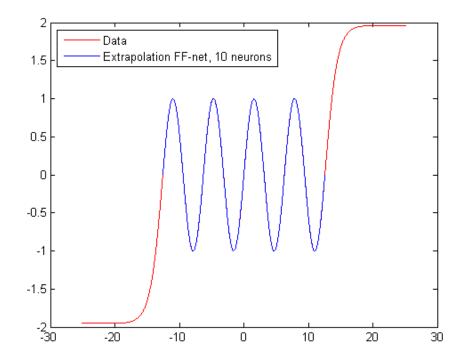


High-Dimensionality of Input Space

Well-known: Curse of dimensionality → problems with fitting the model

Extrapolation: what happens, if you evaluate your model outside your

data domain?



- Remedy: avoid extrapolation, know your data!
- Description of a high-dimensional data domain more difficult

Reporting: Interpretation

- Who is more important?
- Who has the higher impact?
- The importance of a variable is hard to assess.
 - Maybe in the context of a linear model: biggest coefficient
 - Importance for a special group of people only
 - Interactions effect only in combination with other inputs
- Performance indexes
 - Do they measure what they are supposed to measure?

Summary

- Big Data mostly does not create new dangers
- But well-known mistakes can have more effect
- Treated topics
 - Selection bias
 - Miss important variables
 - Too little descriptive analysis
 - Multiple testing problem
 - Confusing correlations and causality
 - Curse of dimensionality
 - Extrapolation
 - Performance indexes
- Many things wait for being discovered
- Big Data can be a big help
- Hopefully, new results are real

Enjoy your results.....

...you will never see them again